Jo Sep 28, 2023

High-intensity focused ultrasound (HIFU) is being widely used to treat tumors in prostate, liver, kidney, pancreas, bone, breast, and uterine fibroids.

Several numerical simulation methods have been proposed for ultrasound propagation. They include Rayleigh–Sommerfelt diffraction integral, Khokhlov–Zabolotskaya–Kuznetsov (KZK) method, FDTD method, etc. In most methods, FDTD algorithm was applied to compute the temperature field caused by ultrasound exposure. In some methods, HIFU heating model by the finite element method was proposed to solve the linear Westervelt equation and the Pennes bio-heat transfer equation.

Kim Sang Jin, a researcher at the Faculty of Physics Engineering, has proposed a new numerical simulation method to predict the temperature distribution in human tissues during ultrasound tumour therapy. First, in order to calculate the pressure distribution in human tissue, he solved the nonlinear Westervelt equation using finite difference time domain (FDTD) algorithm. Second, to calculate the temperature distribution in human tissue, he solved the Pennes bio-heat transfer equation using lattice Boltzmann method (LBM). To verify the theoretical analysis, he compared the results with experimental measurements of previous works.

The results showed that the FDTD-LBM provides a high degree of accuracy in the simulation on the sound pressure field and temperature field in human tissue during high-intensity focused ultrasound therapy, and that the temperature value at focal point clearly increases and the focal length gets smaller with the increase in the ultrasound frequency.

For more information, please refer to his paper “Numerical Simulation Method for Prediction of HIFU Induced Lesions in Human Tissue: FDTD-LBM” in “Physics of Wave Phenomena”.