• Home
  • Great Leadership
    • Jun 2, 2024
    • May 22, 2024
    • May 16, 2024
    • Jan 3, 2024
    • Dec 17, 2023
    • Nov 24, 2023
    • Nov 24, 2023
    • Mar 10, 2019
    • Sep 28, 2018
  • About
    4
    • Mission
    • Emblem
    • Structures
    • Campus
    • Apartment Houses for Teachers
    • Professors
  • Education
    1
    • Undergraduate
    • Postgraduate
    • Engineering Science Institute
    • Refresher Education
    • Distance Education
  • Research
    1
    • Research Project
    • Intellectual Property
    • Forums and Public Presentations
    • Paper Publication to SCI Journals
  • Campus Life
    • Colourful Activities
    • Arts
    • Sports
  • International
    • Friendship
    • International Cooperation
    • International Competition
    • Contacts
  • English
    • 조선어

Search:

News

  • All
  • Education
  • Research
  • Others
  • first
  • prev
  • 43
  • 44
  • 45
  • ...
  • 106
  • next
  • last

A Method for Improvement of Mining Engineering Desi...

Jo May 10, 2024

Nowadays numerical simulation is an essential tool for stability analysis of mining engineering, and constructing a more realistic numerical model is important to ensure the accuracy and reliability of mining engineering design.

In recent years, many researchers have made significant progress in the study to quickly obtain more realistic structural elements of stopes and to apply them to production practice by performing numerical simulations of mining areas with FLAC3D. However, the model construction parts in these programs are quite difficult to use for building large and complex 3D mining models, particularly, for multi-seam and multi-boundary geological bodies.

Han Un Chol, a researcher at the Science Engineering Institute has proposed a new method of quickly converting a 3D solid model into a numerical one for stability analysis of geotechnical and mining structures by combining ANSYS, FLAC3D and SURPAC.

First, he carried out a detailed analysis of the data structure used in these three programs and presented a transformation technique between the data. Then, he converted the integrated 3D solid model made by SURPAC into a numerical model of ANSYS, and meshed it as tetrahedral elements, and consecutively, converted the meshed model of ANSYS into a grid model of FLAC3D for numerical simulation.

Finally, he applied the proposed method to numerical analysis of pillar stability in the sublevel open stopes in the target mine. It was shown that the model transformation time can be reduced to 1/50 and the accuracy of the numerical model can be increased by more than 20%.

...

Detail

Characteristics Improvement of Weld Joint of Low Al...

Jo May 6, 2024

To estimate the lifetime of welding joints of steam pipes working at high temperatures and high pressures is of great importance for the stability and maximum economic efficiency of steam power plants. Long-term exposure of heat-resistant steels at high temperature leads to deterioration in the mechanical properties because of the changes in the microstructure. Alloying elements and microstructures significantly affect the heat resistance in the welds of low alloy heat resistant steel at high temperature.

In order to illustrate the changing nature of heat resistance, Ri Won Jun, a researcher at the Faculty of Materials Science and Technology, investigated the mechanical properties (ultimate strength, yield strength, elongation, hardness, etc.) of pipe materials and their welding joints with respect to the content of elements in carbides, their morphology and change in the metallic structures. Also, he conducted an experiment by using zirconium instead of vanadium for electrodes to evaluate the microstructure of deposited metal, mechanical properties at room temperature, metallic structures analysis, carbide analysis, scale resistance, short-term creep strength and long-term creep strength.

As a result, he drew the following conclusions.

First, the metallographic study showed that Zr series has less migrant tendency of the grain boundary than V series at high temperatures for a long time. And the comparison of mechanical properties with hybrid carbides showed that Zr series is superior to V series in all indices.

Second, the experiment for oxidation inclination at high temperature showed that the value of scale oxidation of Zr series is 1.4 times higher than that of V series, indicating that Zr series is more stable at high temperature.

Third, the metal deposited by the stick electrode coated with Zr has no ferrite segregation and the primary structure is finer than that with V.

...

Detail

Improvement of Quality and Yield for Investment Cas...

Jo Apr 29, 2024

Investment casting is widely used to make complex castings with high dimensional accuracy at low cost. The impellers of centrifugal pumps have many thin-walled regions and structures of uneven thickness in parts, so shrinkage defects can occur in these areas.

Also, their complex internal cavities cause excessive variations in the velocities of molten metal flowing into the shell mold. This results in gas and non-metal inclusion defects in castings. Therefore, it is important to avoid these casting defects occurring in investment casting of impellers.

Kim Yu Chol, a section head at the Faculty of Materials Science and Technology, has succeeded in making centrifugal pump impellers with no defects by optimal design of runner/riser system and mold tilt angle with ProCast software, thus enhancing the quality of castings and reducing production hours. The sprue was used as a kind of riser to feed shrinkage of casting and enhance casting yield. The shell mold was tilted at various tilt angles to eliminate gas and inclusions during pouring.

You can find the details in his paper “Improvement of quality and yield for investment casting of centrifugal pump impeller by tilting mold and optimizing runner/riser system” in “The International Journal of Advanced Manufacturing Technology” (SCI).

...

Detail

A New method to Improve Homogeneity and Oxidation S...

Jo Apr 26, 2024

Preparation of copper nanoparticles have depended on liquid-phase reduction, where copper sulfate as raw material is dissolved in deionized water and a certain amount of dispersant is added before they were heated under stirring to reach reduction reaction temperature and reducing agent is dropped and mixed to produce copper nanoparticles.

Then, mixing reducing agents takes long while the reduction rate of copper ions is very fast (reduction reaction is already initiated before required amount of reducing agent is mixed). This results in non-uniform nucleation-crystalline growth, thus copper nanoparticles unhomogeneous in size being obtained.

After the reduction reaction, the copper nanoparticles dispersed in liquid phase are separated from the liquid phase using a high-speed centrifuge, which are diluted again in deionized water, and centrifugation washing process is repeated several times, so oxidation by atmospheric oxygen is easily achieved.

Kim Song Chol, a researcher at the Faculty of Materials Science and Technology, prepared relatively uniform-size copper nanoparticles by thoroughly mixing the reactants (copper salt solution + reducing agent solution) at room temperature in the liquid-phase reduction process (based on the fact that reduction reaction never occurs even when copper sulfate aqueous solution and reducing agent solution are mixed below 40ºC) and heating to the reaction temperature under stirring, allowing simultaneous and homogeneous nucleation of crystalline nuclei to be formed in the reaction system.

In addition, he realized separation and wash of produced copper nanoparticles from aqueous solution without a centrifuge, and instead introduced volatile organic solvent into reaction system to encapsulate the produced copper nanoparticles. By doing so, he ensured their surfaces are protected as soon as the copper nanoparticles are produced, and also simplified the separation and washing process.

The proposed technique can reduce the production cost of copper nanoparticles and increase the rate of recovery, particle size homogeneity and oxidation stability. In addition, it is a great potential for practical applications as producing copper nanoparticles as there is no need for expensive high-speed centrifuges. It is also useful for mass production of copper nanoparticles as lubricating oil additives.

You can find more information in his paper “A new method to improve homogeneity and oxidation stability of Cu nanoparticles for lubricant additive in liquid phase reduction process” in “ Materials Research Express ” (SCI).

...

Detail

Study on Simultaneous Electrodeposition Behavior of...

Jo Apr 24, 2024

Generally, less active metals (Cu, Ni, Zn…) are electrolyzed in aqueous liquid, but highly active metals such as rare earth elements and light metals are not. This is because hydrogen is gassed on electrode before deposition of metal in aqueous solution. Electrodeposition of rare earth elements is only possible by fused salt electrolysis at high temperature. Therefore, researchers have studied electrodeposition of one or two rare earth elements in molten salts and special organic solvents.

One of the major advantages of ionic liquids in electrodeposition is that electrochemical processes are carried out at low temperatures close to room temperature. This can reduce the energy loss of electrochemical processes that must be carried out at high temperatures. Therefore, some researchers have used various ionic liquids for electrodeposition of various active metallic elements at low temperatures. However, the liquids are highly hygroscopic and thus, an inert gas-filled space must be provided to prevent moisture for the elctrodeposition, which makes them difficult to be applied to industrial applications.

Use of 1-ethyl-3-methyl-imidazolium fluoroborate (EMIMBF4) ionic liquids has the potential for electrolysis of rare earth elements with no special conditions.

An Hyo Song, a researcher at the General Assay Office, has proposed a new method for the co-electrodeposition of dysprosium and terbium using EMIMBF4 ionic liquid.

The experiments demonstrated that the electrodeposition of dysprosium and terbium ions in EMIMBF4 ionic liquids is an irreversible and simultaneous process. He used the measured data to ensure that the electrolyte composition and diffusivity are reasonable, and newly determined the kinetic diffusion coefficients of these chemical reactions from cyclic voltammetric and chronoamperometric analyses.

For more information, please refer to his paper “ Simultaneous electrodeposition behavior of dysprosium and terbium in 1-ethyl-3-methyl-imidazolium tetrafluoroborate ionic liquid” in “ Journal of the Indian Chemistry Society” (SCI).

...

Detail

Phenomenological Constitutive Models for Thermo-mec...

Jo Apr 23, 2024

300M steel is a typical ultra-high strength steel with very high strength, excellent fracture toughness, good fatigue strength and stress corrosion resistance, and thus it has found expansive applications in the manufacture of key components of military and civil aircrafts.

300M steel can be formed into complex-shaped parts such as landing gears which are one of the four core components of aircraft, as well as into sheet or rod. However, deformation of 300M steel should be performed at elevated temperatures because of its high strength and limited ductility.

In recent years, some scholars have established constitutive models to predict the hot deformation behavior in ultra-high strength steels. Unfortunately, few studies on phenomenological models for 300M steel have been conducted or reported, except for the AT model.

Sim Kyong Ho, a researcher at the Faculty of Materials Science and Technology, has developed and improved sc-AT, m-JC and KHL models to describe the hot deformation behavior of 300M ultra-high strength steel.

First, he conducted isothermal uniaxial compression tests under various thermo-mechanical processing conditions.

Second, by using the experimental data, he developed the AT, m-JC and KHL models for 300M steel, and evaluated the predictability of the models.

Based on the analysis of the cause of large deviation, he further improved the m-JC and KHL models, and verified the prediction accuracy of the five constitutive models by using standard statistical parameters.

He drew the following conclusions.

The m-JC and KHL models show relatively good predictability at the reference conditions. The sc-AT model exhibits the highest R2 value of 0.9971 and the lowest AARE value of 3.57 %. In view of the prediction accuracy and computation complexity, the improved versions of m-JC and KHL models are preferred models among the phenomenological constitutive models he studied.

The details are found in his paper “Development and Improvement of Several Phenomenological Constitutive Models for Thermo-mechanical Processing of 300M Ultra-high Strength Steel” in “Journal of Materials Engineering and Performance” (SCI).

...

Detail
  • first
  • prev
  • 43
  • 44
  • 45
  • ...
  • 106
  • next
  • last

About

  • Emblem
  • Structures
  • Campus

Education

  • Undergraduate
  • Postgraduate
  • Engineering Science Institute
  • Refresher Education

Research

  • Research Project
  • Intellectual Property
  • Forums and Public Presentations
  • Paper Publication to SCI Journals

Contacts

  • Address: Kyogu-dong, Central District, Yonggwang Street, Pyongyang, DPR Korea
  • E-mail: kut@star-co.net.kp
  • 085 02 381 18111

© 2021 Kim Chaek University of Technology